Selection of Histograms of Oriented Gradients Features for Pedestrian Detection
نویسندگان
چکیده
Histograms of Oriented Gradients (HOG) is one of the wellknown features for object recognition. HOG features are calculated by taking orientation histograms of edge intensity in a local region. N.Dalal et al. proposed an object detection algorithm in which HOG features were extracted from all locations of a dense grid on a image region and the combined features are classified by using linear Support Vector Machine (SVM). In this paper, we employ HOG features extracted from all locations of a grid on the image as candidates of the feature vectors. Principal Component Analysis (PCA) is applied to these HOG feature vectors to obtain the score (PCA-HOG) vectors. Then a proper subset of PCA-HOG feature vectors is selected by using Stepwise Forward Selection (SFS) algorithm or Stepwise Backward Selection (SBS) algorithm to improve the generalization performance. The selected PCA-HOG feature vectors are used as an input of linear SVM to classify the given input into pedestrian/non-pedestrian. The improvement of the recognition rates are confirmed through experiments using MIT pedestrian dataset.
منابع مشابه
Pedestrian Detection using a boosted cascade of Histogram of Oriented Gradients
Pedestrian detection has been an active area of research in recent years; its interest relies on the potential positive impact on quality of life of the related applications (surveillance systems, automotive safety, robotics, multimedia content analysis, assistive technology and advanced interactive interfaces, among others). The large variability of human appearances, poses and context conditi...
متن کاملLocal Boosted Features for Pedestrian Detection
The present paper addresses pedestrian detection using local boosted features that are learned from a small set of training images. Our contribution is to use two boosting steps. The first one learns discriminant local features corresponding to pedestrian parts and the second one selects and combines these boosted features into a robust class classifier. In contrast of other works, our features...
متن کامل’Histograms of Oriented Gradients for Human Detection’ versus ’Fast Human Detection Using a Cascade of Histograms of Oriented Gradients’
Dalal and Triggs [1] studied the question of feature sets for robust visual object recognition. They first considered existing edge and gradient based descriptors and then they showed experimentally that grids of Histograms of Oriented Gradients (HoG) descriptors significantly outperform existing feature sets for human detection. After this they studied the influence of each stage of the comput...
متن کاملMultiview Pedestrian Detection Based on Vector Boosting
In this paper, a multiview pedestrian detection method based on Vector Boosting algorithm is presented. The Extended Histograms of Oriented Gradients (EHOG) features are formed via dominant orientations in which gradient orientations are quantified into several angle scales that divide gradient orientation space into a number of dominant orientations. Blocks of combined rectangles with their do...
متن کاملSymmetrical Judgment and Improvement of CoHOG Feature Descriptor for Pedestrian Detection
Pedestrian detection method is the highest priority for “active safety” which prevents traffic accidents before happens. In previous studies, edge orientation based feature descriptors are proposed. Recently, high standard detection algorithm, Co-occurrence Histograms of Oriented Gradients (CoHOG) is proposed. However, this method has miss detection in complicated situation and processing cost ...
متن کامل